simplehuman Rechargeable Sensor Pump for Liquid Soap and Hand Sanitizer in Brushed Stainless Steel, 2-Pack

Made from premium-quality stainless steel for lasting durability. Rechargeable design allows for convenient use. Features a clog-proof tubing pump for smooth soap dispensing.

More Info. & Price

2 PACK: The simplehuman sensor pump is the most efficient way to wash your hands – no germs or smudges left behind. It has a clog-proof tubing pump that ensures a precise and consistent flow, and the silicone valve prevents messy drips. To control the amount of soap desired, you can position your hand up close to the sensor for a little soap and farther away for more. A funnel refill opening makes refills fast and easy, and it’s waterproof for easy cleaning. It recharges with the included charging puck – one charge lasts up to 3 months. Use simplehuman soap for optimum pump performance.

  • Touch-free – neat, easy and automatic, touch-free operation means no germs passed on, and no smudges left behind
  • Clog-proof tubing pump – for precise and consistent soap flow
  • Funnel refill opening – makes it easy to refill your sensor pump without messy drips
  • Variable dispense – position your hand up close for a little soap and farther away for more
  • No-drip valve – flexible silicone valve snaps shut to create a seal preventing messy drips
  • Look, no batteries – recharge plug on the back is easy to access, and one charge lasts up to 3 months
  • Waterproof for easy cleaning – with an IP67 rating, you can rinse the pump in the sink to keep it clean.
  • Perfect for hand sanitizer – this soap pump can also be used with hand sanitizer as well as soap

Additional information

Dimensions

H 6.8 in, W 2.8 in, D 4.4 in

Manufacturer Warranty

2 year warranty

2 (two) is a number, numeral and digit. It is the natural number following 1 and preceding 3. It is the smallest and the only even prime number.

Because it forms the basis of a duality, it has religious and spiritual significance in many cultures.

A hand is a prehensile, multi-fingered appendage located at the end of the forearm or forelimb of primates such as humans, chimpanzees, monkeys, and lemurs. A few other vertebrates such as the koala (which has two opposable thumbs on each "hand" and fingerprints extremely similar to human fingerprints) are often described as having "hands" instead of paws on their front limbs. The raccoon is usually described as having "hands" though opposable thumbs are lacking.

Some evolutionary anatomists use the term hand to refer to the appendage of digits on the forelimb more generally—for example, in the context of whether the three digits of the bird hand involved the same homologous loss of two digits as in the dinosaur hand.

The human hand usually has five digits: four fingers plus one thumb; these are often referred to collectively as five fingers, however, whereby the thumb is included as one of the fingers. It has 27 bones, not including the sesamoid bone, the number of which varies among people, 14 of which are the phalanges (proximal, intermediate and distal) of the fingers and thumb. The metacarpal bones connect the fingers and the carpal bones of the wrist. Each human hand has five metacarpals and eight carpal bones.

Fingers contain some of the densest areas of nerve endings in the body, and are the richest source of tactile feedback. They also have the greatest positioning capability of the body; thus, the sense of touch is intimately associated with hands. Like other paired organs (eyes, feet, legs) each hand is dominantly controlled by the opposing brain hemisphere, so that handedness—the preferred hand choice for single-handed activities such as writing with a pencil—reflects individual brain functioning.

Among humans, the hands play an important function in body language and sign language. Likewise, the ten digits of two hands and the twelve phalanges of four fingers (touchable by the thumb) have given rise to number systems and calculation techniques.

A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a nearly constant volume independent of pressure. It is one of the four fundamental states of matter (the others being solid, gas, and plasma), and is the only state with a definite volume but no fixed shape.

The density of a liquid is usually close to that of a solid, and much higher than that of a gas. Therefore, liquid and solid are both termed condensed matter. On the other hand, as liquids and gases share the ability to flow, they are both called fluids.

A liquid is made up of tiny vibrating particles of matter, such as atoms, held together by intermolecular bonds. Like a gas, a liquid is able to flow and take the shape of a container. Unlike a gas, a liquid maintains a fairly constant density and does not disperse to fill every space of a container.

Although liquid water is abundant on Earth, this state of matter is actually the least common in the known universe, because liquids require a relatively narrow temperature/pressure range to exist. Most known matter in the universe is either gas (as interstellar clouds) or plasma (as stars).

A pump is a device that moves fluids (liquids or gases), or sometimes slurries, by mechanical action, typically converted from electrical energy into hydraulic energy.

Mechanical pumps serve in a wide range of applications such as pumping water from wells, aquarium filtering, pond filtering and aeration, in the car industry for water-cooling and fuel injection, in the energy industry for pumping oil and natural gas or for operating cooling towers and other components of heating, ventilation and air conditioning systems. In the medical industry, pumps are used for biochemical processes in developing and manufacturing medicine, and as artificial replacements for body parts, in particular the artificial heart and penile prosthesis.

When a pump contains two or more pump mechanisms with fluid being directed to flow through them in series, it is called a multi-stage pump. Terms such as two-stage or double-stage may be used to specifically describe the number of stages. A pump that does not fit this description is simply a single-stage pump in contrast.

In biology, many different types of chemical and biomechanical pumps have evolved; biomimicry is sometimes used in developing new types of mechanical pumps.

A sensor is a device that produces an output signal for the purpose of detecting a physical phenomenon.

In the broadest definition, a sensor is a device, module, machine, or subsystem that detects events or changes in its environment and sends the information to other electronics, frequently a computer processor.

Sensors are used in everyday objects such as touch-sensitive elevator buttons (tactile sensor) and lamps which dim or brighten by touching the base, and in innumerable applications of which most people are never aware. With advances in micromachinery and easy-to-use microcontroller platforms, the uses of sensors have expanded beyond the traditional fields of temperature, pressure and flow measurement, for example into MARG sensors.

Analog sensors such as potentiometers and force-sensing resistors are still widely used. Their applications include manufacturing and machinery, airplanes and aerospace, cars, medicine, robotics and many other aspects of our day-to-day life. There is a wide range of other sensors that measure chemical and physical properties of materials, including optical sensors for refractive index measurement, vibrational sensors for fluid viscosity measurement, and electro-chemical sensors for monitoring pH of fluids.

A sensor's sensitivity indicates how much its output changes when the input quantity it measures changes. For instance, if the mercury in a thermometer moves 1  cm when the temperature changes by 1 °C, its sensitivity is 1 cm/°C (it is basically the slope dy/dx assuming a linear characteristic). Some sensors can also affect what they measure; for instance, a room temperature thermometer inserted into a hot cup of liquid cools the liquid while the liquid heats the thermometer. Sensors are usually designed to have a small effect on what is measured; making the sensor smaller often improves this and may introduce other advantages.

Technological progress allows more and more sensors to be manufactured on a microscopic scale as microsensors using MEMS technology. In most cases, a microsensor reaches a significantly faster measurement time and higher sensitivity compared with macroscopic approaches. Due to the increasing demand for rapid, affordable and reliable information in today's world, disposable sensors—low-cost and easy‐to‐use devices for short‐term monitoring or single‐shot measurements—have recently gained growing importance. Using this class of sensors, critical analytical information can be obtained by anyone, anywhere and at any time, without the need for recalibration and worrying about contamination.

Simplehuman is a privately owned designer and manufacturer of kitchen, bath, and beauty tools based in Torrance, California. Simplehuman's trash cans, touch-free soap pumps, shower caddies, and magnified sensor-activated vanity mirrors are sold across the US and internationally both on its website and at various brick-and-mortar retail chains such as Bed Bath & Beyond, The Container Store, Crate & Barrel, Nordstrom, and Neiman Marcus.

Soap is a salt of a fatty acid (sometimes other carboxylic acids) used for cleaning and lubricating products as well as other applications. In a domestic setting, soaps, specifically "toilet soaps", are surfactants usually used for washing, bathing, and other types of housekeeping. In industrial settings, soaps are used as thickeners, components of some lubricants, emulsifiers, and catalysts.

Soaps are often produced by mixing fats and oils with a base. Humans have used soap for millennia; evidence exists for the production of soap-like materials in ancient Babylon around 2800 BC.

Stainless may refer to:

  • Cleanliness, or the quality of being clean
  • Stainless steel, a corrosion-resistant metal alloy
  • Stainless Games, a British video game developer
  • Stainless Broadcasting Company, a TV broadcaster based in Michigan, US
  • Stainless Banner, the second national flag of the Confederate States of America

Steel is an alloy of iron and carbon with improved strength and fracture resistance compared to other forms of iron. Because of its high tensile strength and low cost, steel is one of the most commonly manufactured materials in the world. Steel is used in buildings, as concrete reinforcing rods, in bridges, infrastructure, tools, ships, trains, cars, bicycles, machines, electrical appliances, furniture, and weapons.

Iron is always the main element in steel, but many other elements may be present or added. Stainless steels, which are resistant to corrosion and oxidation, typically need an additional 11% chromium.

Iron is the base metal of steel. Depending on the temperature, it can take two crystalline forms (allotropic forms): body-centred cubic and face-centred cubic. The interaction of the allotropes of iron with the alloying elements, primarily carbon, gives steel and cast iron their range of unique properties. In pure iron, the crystal structure has relatively little resistance to the iron atoms slipping past one another, and so pure iron is quite ductile, or soft and easily formed. In steel, small amounts of carbon, other elements, and inclusions within the iron act as hardening agents that prevent the movement of dislocations.

The carbon in typical steel alloys may contribute up to 2.14% of its weight. Varying the amount of carbon and many other alloying elements, as well as controlling their chemical and physical makeup in the final steel (either as solute elements, or as precipitated phases), impedes the movement of the dislocations that make pure iron ductile, and thus controls and enhances its qualities. These qualities include the hardness, quenching behaviour, need for annealing, tempering behaviour, yield strength, and tensile strength of the resulting steel. The increase in steel's strength compared to pure iron is possible only by reducing iron's ductility.

Steel was produced in bloomery furnaces for thousands of years, but its large-scale, industrial use began only after more efficient production methods were devised in the 17th century, with the introduction of the blast furnace and production of crucible steel. This was followed by the Bessemer process in England in the mid-19th century, and then by the open-hearth furnace. With the invention of the Bessemer process, a new era of mass-produced steel began. Mild steel replaced wrought iron. The German states were the major steel producers in Europe in the 19th century. American steel production was centred in Pittsburgh, Bethlehem, Pennsylvania, and Cleveland until the late 20th century. Currently, world steel production is centered in China, which produced 54% of the world's steel in 2023.

Further refinements in the process, such as basic oxygen steelmaking (BOS), largely replaced earlier methods by further lowering the cost of production and increasing the quality of the final product. Today more than 1.6 billion tons of steel is produced annually. Modern steel is generally identified by various grades defined by assorted standards organizations. The modern steel industry is one of the largest manufacturing industries in the world, but also one of the most energy and greenhouse gas emission intense industries, contributing 8% of global emissions. However, steel is also very reusable: it is one of the world's most-recycled materials, with a recycling rate of over 60% globally.

Submit your review

Your email address will not be published. Required fields are marked *

Reviews

There are no reviews yet.

Main Menu